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LETTER TO THE EDITOR 

Lattice and continuous one-dimensional fluid models with a 
triple point 

G L Wilson and G M Bell 
Mathematics Department, Chelsea College, University of London, Manresa Road, 
London, SW3 6LX, UK 

Received 20 January 1977 

Abstract. One-dimensional fluid models with a hard core, a short-range repulsion and a 
long-range attraction are considered. For certain parameter ranges there is a triple point 
where vapour, liquid and close-packed phases meet. Results for a lattice model are 
compared with results for the corresponding continuous model and are found to be 
qualitatively similar. However, the symmetry with respect to density in the lattice model is 
absent in the continuous model and the temperature and pressure at the triple point are 
much higher in the former than in the latter. 

We consider a one-dimensional lattice model and the corresponding continuous model, 
both of which display a triple point for certain parameter ranges when a hard-core 
interaction, a short-range repulsion and a long-range attraction are present. Since 
one-dimensional models cannot develop long-range order the place of the solid state in 
experimental phase diagrams is taken in the theoretical phase diagrams by a close- 
packed fluid state. The other two phases present will be referred to as liquid and vapour 
respectively. Runnels (1972) has reviewed the effect on the phase diagram of changing 
the lattice mesh size in two- and three-dimensional fluid models while Hall and Stell 
(1973) and Kaye and Burley (1974) have derived phase diagrams for two-dimensional 
models with a hard core extending over several lattice spacings and a long-range 
attraction. The present simple model has the advantage that, apart from making the 
range of the potential infinite, no approximations need be introduced and it is possible 
to compare a coarse lattice mesh with an infinitely fine mesh (i.e. with the continuous 
case.) 

Introduce a density p scaled so that the maximum possible value of p is 1. Let the 
length occupied by each molecule when p = 1 be a. (In the lattice model a is the lattice 
spacing while in the continuous model it is the hard-core length.) Denote the configura- 
tional free energy per length a in a reference model without long-range interaction by 
f$(p, T ) ,  T being the absolute temperature. Then the pressure p *  and the configura- 
tional chemical potential EL: in the reference model are given by 

P*a = PELc*--fc*, EL c* = af :lap. (1) 

f c b ,  n =f,*(p, 77-Kp2,  K>O. (2) 

With a long-range attraction the configurational free energy is given by 

Lebowitz and Penrose (1966) showed that the convex envelope of the function (2) at 
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constant T represents the limiting free energy when the attractive interaction between a 
pair of molecules becomes infinitely small at each point, but of infinitely long range. The 
parameter K is proportional to an integral over d-dimensional space where d = 1 in the 
present case. The corresponding forms of pressure and chemical potential are given by 

pa = p*a - Kp’, p,= p.c* - 2Kp. (3) 

In the lattice model it is supposed that nearest-neighbour molecules have a repulsive 
interaction energy E >O.  Using the transfer matrix method for the grand partition 
function, the relation between chemical potential and pressure in the reference model is 

where 

x = exp@p*a), z = exp(PCL.c*), p = (kT)-’, ( 5 )  

a = ( 4 2 )  exp(PE) (6) 

(a- l ) (x  - 1) = exp(PE). (7) 

k being Boltzmann’s constant. If a variable defined by 

is introduced, equation (4) takes the form 

The chemical potential pr can be derived as a function of p* and Tfrom (6) and (7). The 
density is then given by the relations 

where f is the mean length per molecule. Once we have the density p in the reference 
model for a pair of values of p* and pL,* the corresponding values p and p, for the model 
with long-range interaction can be derived from (3). Then phase equilibrium can be 
obtained by plotting p, against p. 

For the lattice model, however, it is better to make use of certain symmetry 
properties in deriving the phase diagram. First, note that from (3) and ( 5 )  

pa = kT In x - Kp2 

Pa = kT In a -K(1  -p) ’  =pa - p , + ~  -K. 

(9) 

(10) 

and then define the quantity P by 

Equations (6), (9) and (3) were used in deriving the last expression. Now, from (7) it is 
possible to interchange values of x and a. It follows from (8) that p and 1 - p  are then 
interchanged and from (9) and (10) that p and P are also interchanged. Hence if P is 
plotted against p at a given temperature the curve will be symmetrical about the line 
P = p. Any self-intersection of this curve implies phases with different densities but 
equal values of p and p, and corresponds to phase equilibrium. If the intersection lies 
on the line P = p the conjugate phases have densities p and 1 - p .  Any self-intersection 
which is off the line P = p has a ‘twin’ placed symmetrically on the other side of this line. 
Hence if phases with densities p1 and p2,  where p1 # 1 - p 2  are in equilibrium then there 
is another pair of conjugate phases at the same temperature with densities 1 - p l  and 
l -pz.  
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For i > e / K  > 0.3 17 there is vapour/close-packed equilibrium between T = 0 and 
the triple point, where the liquid phase appears. Above the triple point there are 
liquid/close-packed and vapour/liquid equilibrium lines which, because of the sym- 
metry properties, terminate in critical points at the same temperature (see figure 1). In 
the (T, p )  plane the phase diagram is symmetrical about the line p = 4 (see figure 3). For 
E / K  >$the short-range repulsion is too large for the close-packed phase to occur at low 
pressures and there are non-intersecting liquid/close-packed and vapour/liquid 
equilibrium lines in the (T, p )  plane. These leave the p axis at the origin and the point 
pa = E -$K respectively and terminate at the same temperature. For 0.317 > E / K  
there is only one equilibrium line. 

The lattice fluid can be transformed into a magnetic model which was treated by 
Nagle (Nagle 1970, Bonner and Nagle 1971). The molecules and ‘holes’ are equivalent 
to ‘up’ and ‘down’ dipoles with an antiferromagnetic short-range exchange energy 
parameter J = :e and a long-range interaction energy -iKmz per site, where m = 2 p  - 1 
is the relative magnetization. The dipoles are acted on by an external field H, where 
Hd = i ( p , - e  + K ) ,  d being the dipole strength. The relation between the grand 
partition function for the fluid and the partition function (PF)M for the magnet is given by 

exPrPN(Pa - $ p c ) I =  exPC“ - E)I(PF)M, 

N being the number of sites. The symmetry properties of the fluid are related to the 
field-reversal symmetry of the magnet. They can be deduced from the invariance of 
(PF)M with respect to change of sign of H. 

We now consider the corresponding continuous fluid. The short-range interaction 
energy between two molecules with centres at distance r is given by 

O G r < a  
a c r < 2 a  
2a < r .  

Thus the ‘hard core’ of each molecule is of length a and two molecules can have 
non-zero short-range interaction energy only when no other molecule is situated 
between them. Thus the reference model is a Takahashi gas (see, for instance, 
Thompson 1972). The relation between p,* and p*  can be obtained from a constant- 
pressure partition function and is given by 

exp( -Pd)  =: lo exp[-P(v(r)+p*r>l dr 
m 

The constant factor a-’ makes the right-hand side dimensionless. By using the 
thermodynamic relation expressed by the first three members of equation (8) we then 
have 

This gives a relation between p *  and p and equation (3) is now used to plot p c  against p 
for the continuous model with long-range interaction and hence derive the phase 
equilibria. It is found that there is a triple point when the parameters lie in the range 
+ > e / K  >0.225. 
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In the figures results for the lattice and continuous model are compared for the 
short-range/long-range energy parameter ratio e / K  = 9/20. Figure 1 gives the phase 
equilibrium diagram in the (T, p )  plane for the lattice model, with the corresponding 
diagram for the continuous model shown by the broken curves. Figure 2 gives part of 
the (T, p )  phase diagram, including the triple point, for the continuous model with the 
pressure scale enlarged. The critical point for liquid/close-packed equilibrium in the 
continuous model occurs at too high a pressure to be shown in either diagram: the 
critical values are pale = 0.3509, kT/e = 0.3294, p = 0.6688. Figure 3 compares phase 
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Figure 1. Phase equilibrium diagrams in the temperature-pressure plane for the lattice and 
continuous fluids (the broken curves represent the continuous case). 
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Figpre 2. Part of phase equilibrium diagram in the temperature-pressure plane for the 
continuous fluid (the pressure scale is larger than in figure 1). 
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Figare 3. Phase equilibrium diagrams in the temperature-density plane for the lattice and 
continuous fluids. 

diagrams in the (T, p )  plane. In general the results show that the behaviour of the lattice 
and continuous models is qualitatively similar, except that the symmetry about p = 4 is 
seen to be an artifact of the lattice model. Quantitatively there are considerable 
differences, particularly in the position of the triple point whose temperature and 
pressure are much higher for the lattice fluid than for the continuous one. It is of 
interest that a phase diagram so similar to the experimental vapour/liquid/solid 
diagram can be obtained in models where the close-packed state differs from the liquid 
state in the amount of work against repulsive forces needed to establish the phase but 
where long-range order is absent. However, in the present models there is a 
liquid/close-packed critical point although, particularly for the continuous fluid, its 
pressure is very much higher than that of the vapour/liquid critical point. In observed 
systems, on the other hand, no liquid/solid critical point has ever been found. The 
explanation is probably that in the absence of long-range order the close-packed and 
liquid phases in the models become indistinguishable at very high pressures. Experi- 
mentally, on the other hand, long-range order differentiates between the solid and 
liquid phases even at indefinitely high pressures. 
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